Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10.

نویسندگان

  • Sufyan G Sayyed
  • Anil Bhanudas Gaikwad
  • Julia Lichtnekert
  • Onkar Kulkarni
  • Dirk Eulberg
  • Sven Klussmann
  • Kulbhushan Tikoo
  • Hans-Joachim Anders
چکیده

BACKGROUND Distinct histone modifications regulate gene expression in certain diseases but little is known about histone epigenetics in diabetic nephropathy. The current study examined the role of histone epigenetics in development and progression of nephropathy in db/db mice. METHODS We studied kidney damage in 6-month-old non-diabetic mice and type 2 diabetic db/db mice that underwent either sham surgery or uninephrectomy at 6 weeks of age which accelerates glomerulosclerosis in db/db mice via glomerular hyperfiltration. Histone H3K9 and H3K23 acetylation, H3K4 and H3K9 dimethylation and H3 phosphorylation at serine 10 was explored by western blotting of renal histone extracts. RESULTS Uninephrectomy in C57BL/6 mice or onset of diabetes in type 2 diabetes reduced renal H3K23 acetylation, H3K4 dimethylation and H3 phosphorylation at serine 10. In contrast, H3K9 and H3K23 acetylation, H3K4 dimethylation and H3 phosphorylation at serine 10 were significantly increased in uninephrectomized db/db mice. The disease pattern of these mice is characterized by an increased glomerular cell proliferation, severe glomerulosclerosis, albuminuria and glomerular filtration rate reduction. Treating uninephrectomized db/db mice with a Mcp-1/Ccl2 antagonist prevented the histopathological damage and the aforementioned histone modification abnormalities of advanced diabetic glomerulosclerosis. CONCLUSION We conclude that advanced diabetic nephropathy is associated with increased renal H3K9 and H3K23 acetylation, H3K4 dimethylation and H3 phosphorylation at serine 10 that enhance chromatin unfolding and gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone methylation regulates memory formation.

It has been established that regulation of chromatin structure through post-translational modification of histone proteins, primarily histone H3 phosphorylation and acetylation, is an important early step in the induction of synaptic plasticity and formation of long-term memory. In this study, we investigated the contribution of another histone modification, histone methylation, to memory forma...

متن کامل

Effect of phenylhexyl isothiocyanate on aberrant histone H3 methylation in primary human acute leukemia

BACKGROUND We have previously studied the histone acetylation in primary human leukemia cells. However, histone H3 methylation in these cells has not been characterized. METHODS This study examined the methylation status at histone H3 lysine 4 (H3K4) and histone H3 lysine 9 (H3K9) in primary acute leukemia cells obtained from patients and compared with those in the non-leukemia and healthy ce...

متن کامل

Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance.

Nucleolar dominance describes the silencing of one parental set of ribosomal RNA (rRNA) genes in a genetic hybrid, an epigenetic phenomenon that occurs on a scale second only to X-chromosome inactivation in mammals. An RNA interference (RNAi) knockdown screen revealed that the predicted Arabidopsis histone deacetylase, HDA6, is required for rRNA gene silencing in nucleolar dominance. In vivo, d...

متن کامل

Substitutions in the Amino-Terminal Tail of Neurospora Histone H3 Have Varied Effects on DNA Methylation

Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substi...

متن کامل

P-204: Evaluation of FMR1 Gene Regulatory Region for The Epigenetic Mark of H3K9 Acetylation in Blood Cells of Patients with Diminished Ovarian Reserve Reffered to Royan Institute

Background: Diminished ovarian reserve (DOR) is a heterogeneous disorder causing infertility, characterized by a decreased number of oocytes and high FSH level, the genetic cause of which is still unknown. The association between FMR1 premutations(50-200 CGG repeats) and the premature ovarian failure( POF) disease has suggested that FMR1 gene acts as a risk factor for POF and recently for DOR p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association

دوره 25 6  شماره 

صفحات  -

تاریخ انتشار 2010